Computer Science > Multimedia
[Submitted on 27 Jul 2023]
Title:FLiCR: A Fast and Lightweight LiDAR Point Cloud Compression Based on Lossy RI
View PDFAbstract:Light detection and ranging (LiDAR) sensors are becoming available on modern mobile devices and provide a 3D sensing capability. This new capability is beneficial for perceptions in various use cases, but it is challenging for resource-constrained mobile devices to use the perceptions in real-time because of their high computational complexity. In this context, edge computing can be used to enable LiDAR online perceptions, but offloading the perceptions on the edge server requires a low-latency, lightweight, and efficient compression due to the large volume of LiDAR point clouds data.
This paper presents FLiCR, a fast and lightweight LiDAR point cloud compression method for enabling edge-assisted online perceptions. FLiCR is based on range images (RI) as an intermediate representation (IR), and dictionary coding for compressing RIs. FLiCR achieves its benefits by leveraging lossy RIs, and we show the efficiency of bytestream compression is largely improved with quantization and subsampling. In addition, we identify the limitation of current quality metrics for presenting the entropy of a point cloud, and introduce a new metric that reflects both point-wise and entropy-wise qualities for lossy IRs. The evaluation results show FLiCR is more suitable for edge-assisted real-time perceptions than the existing LiDAR compressions, and we demonstrate the effectiveness of our compression and metric with the evaluations on 3D object detection and LiDAR SLAM.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.