Computer Science > Computation and Language
[Submitted on 22 Jul 2023]
Title:Identifying Misinformation on YouTube through Transcript Contextual Analysis with Transformer Models
View PDFAbstract:Misinformation on YouTube is a significant concern, necessitating robust detection strategies. In this paper, we introduce a novel methodology for video classification, focusing on the veracity of the content. We convert the conventional video classification task into a text classification task by leveraging the textual content derived from the video transcripts. We employ advanced machine learning techniques like transfer learning to solve the classification challenge. Our approach incorporates two forms of transfer learning: (a) fine-tuning base transformer models such as BERT, RoBERTa, and ELECTRA, and (b) few-shot learning using sentence-transformers MPNet and RoBERTa-large. We apply the trained models to three datasets: (a) YouTube Vaccine-misinformation related videos, (b) YouTube Pseudoscience videos, and (c) Fake-News dataset (a collection of articles). Including the Fake-News dataset extended the evaluation of our approach beyond YouTube videos. Using these datasets, we evaluated the models distinguishing valid information from misinformation. The fine-tuned models yielded Matthews Correlation Coefficient>0.81, accuracy>0.90, and F1 score>0.90 in two of three datasets. Interestingly, the few-shot models outperformed the fine-tuned ones by 20% in both Accuracy and F1 score for the YouTube Pseudoscience dataset, highlighting the potential utility of this approach -- especially in the context of limited training data.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.