Computer Science > Computation and Language
[Submitted on 5 Jul 2023]
Title:Graph Contrastive Topic Model
View PDFAbstract:Existing NTMs with contrastive learning suffer from the sample bias problem owing to the word frequency-based sampling strategy, which may result in false negative samples with similar semantics to the prototypes. In this paper, we aim to explore the efficient sampling strategy and contrastive learning in NTMs to address the aforementioned issue. We propose a new sampling assumption that negative samples should contain words that are semantically irrelevant to the prototype. Based on it, we propose the graph contrastive topic model (GCTM), which conducts graph contrastive learning (GCL) using informative positive and negative samples that are generated by the graph-based sampling strategy leveraging in-depth correlation and irrelevance among documents and words. In GCTM, we first model the input document as the document word bipartite graph (DWBG), and construct positive and negative word co-occurrence graphs (WCGs), encoded by graph neural networks, to express in-depth semantic correlation and irrelevance among words. Based on the DWBG and WCGs, we design the document-word information propagation (DWIP) process to perform the edge perturbation of DWBG, based on multi-hop correlations/irrelevance among documents and words. This yields the desired negative and positive samples, which will be utilized for GCL together with the prototypes to improve learning document topic representations and latent topics. We further show that GCL can be interpreted as the structured variational graph auto-encoder which maximizes the mutual information of latent topic representations of different perspectives on DWBG. Experiments on several benchmark datasets demonstrate the effectiveness of our method for topic coherence and document representation learning compared with existing SOTA methods.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.