Computer Science > Machine Learning
[Submitted on 3 Jul 2023]
Title:Learning Differentiable Logic Programs for Abstract Visual Reasoning
View PDFAbstract:Visual reasoning is essential for building intelligent agents that understand the world and perform problem-solving beyond perception. Differentiable forward reasoning has been developed to integrate reasoning with gradient-based machine learning paradigms. However, due to the memory intensity, most existing approaches do not bring the best of the expressivity of first-order logic, excluding a crucial ability to solve abstract visual reasoning, where agents need to perform reasoning by using analogies on abstract concepts in different scenarios. To overcome this problem, we propose NEUro-symbolic Message-pAssiNg reasoNer (NEUMANN), which is a graph-based differentiable forward reasoner, passing messages in a memory-efficient manner and handling structured programs with functors. Moreover, we propose a computationally-efficient structure learning algorithm to perform explanatory program induction on complex visual scenes. To evaluate, in addition to conventional visual reasoning tasks, we propose a new task, visual reasoning behind-the-scenes, where agents need to learn abstract programs and then answer queries by imagining scenes that are not observed. We empirically demonstrate that NEUMANN solves visual reasoning tasks efficiently, outperforming neural, symbolic, and neuro-symbolic baselines.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.