Computer Science > Data Structures and Algorithms
[Submitted on 30 Jun 2023 (v1), last revised 4 Jul 2023 (this version, v2)]
Title:Solving Edge Clique Cover Exactly via Synergistic Data Reduction
View PDFAbstract:The edge clique cover (ECC) problem -- where the goal is to find a minimum cardinality set of cliques that cover all the edges of a graph -- is a classic NP-hard problem that has received much attention from both the theoretical and experimental algorithms communities. While small sparse graphs can be solved exactly via the branch-and-reduce algorithm of Gramm et al. [JEA 2009], larger instances can currently only be solved inexactly using heuristics with unknown overall solution quality. We revisit computing minimum ECCs exactly in practice by combining data reduction for both the ECC \emph{and} vertex clique cover (VCC) problems. We do so by modifying the polynomial-time reduction of Kou et al. [Commun. ACM 1978] to transform a reduced ECC instance to a VCC instance; alternatively, we show it is possible to ``lift'' some VCC reductions to the ECC problem. Our experiments show that combining data reduction for both problems (which we call \emph{synergistic data reduction}) enables finding exact minimum ECCs orders of magnitude faster than the technique of Gramm et al., and allows solving large sparse graphs on up to millions of vertices and edges that have never before been solved. With these new exact solutions, we evaluate the quality of recent heuristic algorithms on large instances for the first time. The most recent of these, \textsf{EO-ECC} by Abdullah et al. [ICCS 2022], solves 8 of the 27 instances for which we have exact solutions. It is our hope that our strategy rallies researchers to seek improved algorithms for the ECC problem.
Submission history
From: Darren Strash [view email][v1] Fri, 30 Jun 2023 17:06:04 UTC (294 KB)
[v2] Tue, 4 Jul 2023 18:04:39 UTC (548 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.