Computer Science > Machine Learning
[Submitted on 29 Jun 2023]
Title:Synthetic Demographic Data Generation for Card Fraud Detection Using GANs
View PDFAbstract:Using machine learning models to generate synthetic data has become common in many fields. Technology to generate synthetic transactions that can be used to detect fraud is also growing fast. Generally, this synthetic data contains only information about the transaction, such as the time, place, and amount of money. It does not usually contain the individual user's characteristics (age and gender are occasionally included). Using relatively complex synthetic demographic data may improve the complexity of transaction data features, thus improving the fraud detection performance. Benefiting from developments of machine learning, some deep learning models have potential to perform better than other well-established synthetic data generation methods, such as microsimulation. In this study, we built a deep-learning Generative Adversarial Network (GAN), called DGGAN, which will be used for demographic data generation. Our model generates samples during model training, which we found important to overcame class imbalance issues. This study can help improve the cognition of synthetic data and further explore the application of synthetic data generation in card fraud detection.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.