Computer Science > Machine Learning
[Submitted on 28 Jun 2023 (v1), last revised 4 Oct 2023 (this version, v2)]
Title:Fused Gromov-Wasserstein Graph Mixup for Graph-level Classifications
View PDFAbstract:Graph data augmentation has shown superiority in enhancing generalizability and robustness of GNNs in graph-level classifications. However, existing methods primarily focus on the augmentation in the graph signal space and the graph structure space independently, neglecting the joint interaction between them. In this paper, we address this limitation by formulating the problem as an optimal transport problem that aims to find an optimal inter-graph node matching strategy considering the interactions between graph structures and signals. To solve this problem, we propose a novel graph mixup algorithm called FGWMixup, which seeks a midpoint of source graphs in the Fused Gromov-Wasserstein (FGW) metric space. To enhance the scalability of our method, we introduce a relaxed FGW solver that accelerates FGWMixup by improving the convergence rate from $\mathcal{O}(t^{-1})$ to $\mathcal{O}(t^{-2})$. Extensive experiments conducted on five datasets using both classic (MPNNs) and advanced (Graphormers) GNN backbones demonstrate that FGWMixup effectively improves the generalizability and robustness of GNNs. Codes are available at this https URL.
Submission history
From: Xinyu Ma [view email][v1] Wed, 28 Jun 2023 07:00:12 UTC (248 KB)
[v2] Wed, 4 Oct 2023 12:33:08 UTC (491 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.