Computer Science > Robotics
[Submitted on 22 Jun 2023]
Title:Robust Recovery Motion Control for Quadrupedal Robots via Learned Terrain Imagination
View PDFAbstract:Quadrupedal robots have emerged as a cutting-edge platform for assisting humans, finding applications in tasks related to inspection and exploration in remote areas. Nevertheless, their floating base structure renders them susceptible to fall in cluttered environments, where manual recovery by a human operator may not always be feasible. Several recent studies have presented recovery controllers employing deep reinforcement learning algorithms. However, these controllers are not specifically designed to operate effectively in cluttered environments, such as stairs and slopes, which restricts their applicability. In this study, we propose a robust all-terrain recovery policy to facilitate rapid and secure recovery in cluttered environments. We substantiate the superiority of our proposed approach through simulations and real-world tests encompassing various terrain types.
Submission history
From: I Made Aswin Nahrendra [view email][v1] Thu, 22 Jun 2023 07:45:20 UTC (28,486 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.