Mathematics > Statistics Theory
[Submitted on 19 Jun 2023]
Title:Minimax optimal testing by classification
View PDFAbstract:This paper considers an ML inspired approach to hypothesis testing known as classifier/classification-accuracy testing ($\mathsf{CAT}$). In $\mathsf{CAT}$, one first trains a classifier by feeding it labeled synthetic samples generated by the null and alternative distributions, which is then used to predict labels of the actual data samples. This method is widely used in practice when the null and alternative are only specified via simulators (as in many scientific experiments).
We study goodness-of-fit, two-sample ($\mathsf{TS}$) and likelihood-free hypothesis testing ($\mathsf{LFHT}$), and show that $\mathsf{CAT}$ achieves (near-)minimax optimal sample complexity in both the dependence on the total-variation ($\mathsf{TV}$) separation $\epsilon$ and the probability of error $\delta$ in a variety of non-parametric settings, including discrete distributions, $d$-dimensional distributions with a smooth density, and the Gaussian sequence model. In particular, we close the high probability sample complexity of $\mathsf{LFHT}$ for each class. As another highlight, we recover the minimax optimal complexity of $\mathsf{TS}$ over discrete distributions, which was recently established by Diakonikolas et al. (2021). The corresponding $\mathsf{CAT}$ simply compares empirical frequencies in the first half of the data, and rejects the null when the classification accuracy on the second half is better than random.
Current browse context:
math.ST
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.