Computer Science > Robotics
[Submitted on 15 Jun 2023]
Title:Motion Comfort Optimization for Autonomous Vehicles: Concepts, Methods, and Techniques
View PDFAbstract:This article outlines the architecture of autonomous driving and related complementary frameworks from the perspective of human comfort. The technical elements for measuring Autonomous Vehicle (AV) user comfort and psychoanalysis are listed here. At the same time, this article introduces the technology related to the structure of automatic driving and the reaction time of automatic driving. We also discuss the technical details related to the automatic driving comfort system, the response time of the AV driver, the comfort level of the AV, motion sickness, and related optimization technologies. The function of the sensor is affected by various factors. Since the sensor of automatic driving mainly senses the environment around a vehicle, including "the weather" which introduces the challenges and limitations of second-hand sensors in autonomous vehicles under different weather conditions. The comfort and safety of autonomous driving are also factors that affect the development of autonomous driving technologies. This article further analyzes the impact of autonomous driving on the user's physical and psychological states and how the comfort factors of autonomous vehicles affect the automotive market. Also, part of our focus is on the benefits and shortcomings of autonomous driving. The goal is to present an exhaustive overview of the most relevant technical matters to help researchers and application developers comprehend the different comfort factors and systems of autonomous driving. Finally, we provide detailed automated driving comfort use cases to illustrate the comfort-related issues of autonomous driving. Then, we provide implications and insights for the future of autonomous driving.
Submission history
From: Basheer Qolomany [view email][v1] Thu, 15 Jun 2023 19:32:04 UTC (5,604 KB)
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.