Mathematics > Combinatorics
[Submitted on 10 Jun 2023]
Title:Linear saturation numbers of Berge-$C_3$ and Berge-$C_4$
View PDFAbstract:The linear saturation number $sat^{lin}_k(n,\mathcal{F})$ (linear extremal number $ex^{lin}_k(n,\mathcal{F})$) of $\mathcal{F}$ is the minimum (maximum) number of hyperedges of an $n$-vertex linear $k$-uniform hypergraph containing no member of $\mathcal{F}$ as a subgraph, but the addition of any new hyperedge such that the result hypergraph is still a linear $k$-uniform hypergraph creates a copy of some hypergraph in $\mathcal{F}$. Determining $ex_3^{lin}(n$, Berge-$C_3$) is equivalent to the famous (6,3)-problem, which has been settled in 1976. Since then, determining the linear extremal numbers of Berge cycles was extensively studied. As the counterpart of this problem in saturation problems, the problem of determining the linear saturation numbers of Berge cycles is considered. In this paper, we prove that $sat^{lin}_k$($n$, Berge-$C_t)\ge \big\lfloor\frac{n-1}{k-1}\big\rfloor$ for any integers $k\ge3$, $t\ge 3$, and the equality holds if $t=3$. In addition, we provide an upper bound for $sat^{lin}_3(n,$ Berge-$C_4)$ and for any disconnected Berge-$C_4$-saturated linear 3-uniform hypergraph, we give a lower bound for the number of hyperedges of it.
Current browse context:
math.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.