Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 7 Jun 2023 (v1), last revised 16 May 2024 (this version, v3)]
Title:The Renoir Dataflow Platform: Efficient Data Processing without Complexity
View PDF HTML (experimental)Abstract:Today, data analysis drives the decision-making process in virtually every human activity. This demands for software platforms that offer simple programming abstractions to express data analysis tasks and that can execute them in an efficient and scalable way. State-of-the-art solutions range from low-level programming primitives, which give control to the developer about communication and resource usage, but require significant effort to develop and optimize new algorithms, to high-level platforms that hide most of the complexities of parallel and distributed processing, but often at the cost of reduced efficiency. To reconcile these requirements, we developed Renoir, a novel distributed data processing platform written in Rust. Renoir provides a high-level dataflow programming model as mainstream data processing systems. It supports static and streaming data, it enables data transformations, grouping, aggregation, iterative computations, and time-based analytics, incurring in a low overhead. This paper presents In this paper, we present the programming model and the implementation details of Renoir. We evaluate it under heterogeneous workloads. We compare it with state-of-the-art solutions for data analysis and high-performance computing, as well as alternative research products, which offer different programming abstractions and implementation strategies. Renoir programs are compact and easy to write: developers need not care about low-level concerns such as resource usage, data serialization, concurrency control, and communication. Renoir consistently presents comparable or better performance than competing solutions, by a large margin in several scenarios. We conclude that Renoir offers a good tradeoff between simplicity and performance, allowing developers to easily express complex data analysis tasks and achieve high performance and scalability.
Submission history
From: Luca De Martini [view email][v1] Wed, 7 Jun 2023 13:27:33 UTC (518 KB)
[v2] Fri, 15 Dec 2023 10:42:15 UTC (452 KB)
[v3] Thu, 16 May 2024 15:58:52 UTC (444 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.