Statistics > Machine Learning
[Submitted on 5 Jun 2023 (v1), last revised 1 Mar 2024 (this version, v3)]
Title:Global universal approximation of functional input maps on weighted spaces
View PDF HTML (experimental)Abstract:We introduce so-called functional input neural networks defined on a possibly infinite dimensional weighted space with values also in a possibly infinite dimensional output space. To this end, we use an additive family to map the input weighted space to the hidden layer, on which a non-linear scalar activation function is applied to each neuron, and finally return the output via some linear readouts. Relying on Stone-Weierstrass theorems on weighted spaces, we can prove a global universal approximation result on weighted spaces for continuous functions going beyond the usual approximation on compact sets. This then applies in particular to approximation of (non-anticipative) path space functionals via functional input neural networks. As a further application of the weighted Stone-Weierstrass theorem we prove a global universal approximation result for linear functions of the signature. We also introduce the viewpoint of Gaussian process regression in this setting and emphasize that the reproducing kernel Hilbert space of the signature kernels are Cameron-Martin spaces of certain Gaussian processes. This paves a way towards uncertainty quantification for signature kernel regression.
Submission history
From: Philipp Schmocker [view email][v1] Mon, 5 Jun 2023 23:06:32 UTC (1,420 KB)
[v2] Thu, 21 Sep 2023 09:51:29 UTC (1,428 KB)
[v3] Fri, 1 Mar 2024 02:17:43 UTC (890 KB)
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.