Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 3 Jun 2023 (v1), last revised 21 Jun 2023 (this version, v4)]
Title:SGEM: Test-Time Adaptation for Automatic Speech Recognition via Sequential-Level Generalized Entropy Minimization
View PDFAbstract:Automatic speech recognition (ASR) models are frequently exposed to data distribution shifts in many real-world scenarios, leading to erroneous predictions. To tackle this issue, an existing test-time adaptation (TTA) method has recently been proposed to adapt the pre-trained ASR model on unlabeled test instances without source data. Despite decent performance gain, this work relies solely on naive greedy decoding and performs adaptation across timesteps at a frame level, which may not be optimal given the sequential nature of the model output. Motivated by this, we propose a novel TTA framework, dubbed SGEM, for general ASR models. To treat the sequential output, SGEM first exploits beam search to explore candidate output logits and selects the most plausible one. Then, it utilizes generalized entropy minimization and negative sampling as unsupervised objectives to adapt the model. SGEM achieves state-of-the-art performance for three mainstream ASR models under various domain shifts.
Submission history
From: Changhun Kim [view email][v1] Sat, 3 Jun 2023 02:27:08 UTC (485 KB)
[v2] Wed, 7 Jun 2023 03:29:03 UTC (485 KB)
[v3] Thu, 8 Jun 2023 03:24:01 UTC (485 KB)
[v4] Wed, 21 Jun 2023 11:13:47 UTC (485 KB)
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.