Mathematics > Numerical Analysis
[Submitted on 24 May 2023 (v1), last revised 25 Feb 2024 (this version, v3)]
Title:A fast and accurate domain-decomposition nonlinear manifold reduced order model
View PDFAbstract:This paper integrates nonlinear-manifold reduced order models (NM-ROMs) with domain decomposition (DD). NM-ROMs approximate the full order model (FOM) state in a nonlinear-manifold by training a shallow, sparse autoencoder using FOM snapshot data. These NM-ROMs can be advantageous over linear-subspace ROMs (LS-ROMs) for problems with slowly decaying Kolmogorov n-width. However, the number of NM-ROM parameters that need to be trained scales with the size of the FOM. Moreover, for "extreme-scale" problems, the storage of high-dimensional FOM snapshots alone can make ROM training expensive. To alleviate the training cost, this paper applies DD to the FOM, computes NM-ROMs on each subdomain, and couples them to obtain a global NM-ROM. This approach has several advantages: Subdomain NM-ROMs can be trained in parallel, involve fewer parameters to be trained than global NM-ROMs, require smaller subdomain FOM dimensional training data, and can be tailored to subdomain-specific features of the FOM. The shallow, sparse architecture of the autoencoder used in each subdomain NM-ROM allows application of hyper-reduction (HR), reducing the complexity caused by nonlinearity and yielding computational speedup of the NM-ROM. This paper provides the first application of NM-ROM (with HR) to a DD problem. In particular, this paper details an algebraic DD reformulation of the FOM, training a NM-ROM with HR for each subdomain, and a sequential quadratic programming (SQP) solver to evaluate the coupled global NM-ROM. Theoretical convergence results for the SQP method and a priori and a posteriori error estimates for the DD NM-ROM with HR are provided. The proposed DD NM-ROM with HR approach is numerically compared to a DD LS-ROM with HR on the 2D steady-state Burgers' equation, showing an order of magnitude improvement in accuracy of the proposed DD NM-ROM over the DD LS-ROM.
Submission history
From: Alejandro Diaz [view email][v1] Wed, 24 May 2023 13:56:37 UTC (1,800 KB)
[v2] Tue, 19 Dec 2023 20:45:45 UTC (1,831 KB)
[v3] Sun, 25 Feb 2024 16:30:57 UTC (1,701 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.