Statistics > Machine Learning
[Submitted on 24 May 2023]
Title:Taylor Learning
View PDFAbstract:Empirical risk minimization stands behind most optimization in supervised machine learning. Under this scheme, labeled data is used to approximate an expected cost (risk), and a learning algorithm updates model-defining parameters in search of an empirical risk minimizer, with the aim of thereby approximately minimizing expected cost. Parameter update is often done by some sort of gradient descent. In this paper, we introduce a learning algorithm to construct models for real analytic functions using neither gradient descent nor empirical risk minimization. Observing that such functions are defined by local information, we situate familiar Taylor approximation methods in the context of sampling data from a distribution, and prove a nonuniform learning result.
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.