Computer Science > Computer Science and Game Theory
[Submitted on 22 May 2023]
Title:On the Computational Complexity of Mechanism Design in Single-Crossing Settings
View PDFAbstract:We explore the performance of polynomial-time incentive-compatible mechanisms in single-crossing domains. Single-crossing domains were extensively studied in the economics literature. Roughly speaking, a domain is single crossing if monotonicity characterizes incentive compatibility. That is, single-crossing domains are the standard mathematical formulation of domains that are informally known as ``single parameter''. In all major single-crossing domains studied so far (e.g., welfare maximization in various auctions with single-minded bidders, makespan minimization on related machines), the performance of the best polynomial-time incentive-compatible mechanisms matches the performance of the best polynomial-time non-incentive-compatible algorithms. Our two main results make progress in understanding the power of incentive-compatible polynomial-time mechanisms in single-crossing domains:
We provide the first proof of a gap in the power of polynomial-time incentive-compatible mechanisms and polynomial-time non-incentive-compatible algorithms: we present an objective function in a single-crossing multi-unit auction for which there is a polynomial-time algorithm that provides an approximation ratio of $\frac{1}{2}$, yet no polynomial-time incentive-compatible mechanism provides a finite approximation (under standard computational complexity assumptions).
The objective function used above is not natural. We show that to some extent this is unavoidable by providing a sweeping positive result for the most natural objective function in multi-unit auctions, that of welfare maximization. We present an incentive-compatible FPTAS mechanism for every multi-unit auction with single-crossing domains. This improves over the mechanism of Briest et al. [STOC'05] that only applies to the much simpler case of single-minded bidders.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.