Computer Science > Human-Computer Interaction
[Submitted on 19 May 2023]
Title:RECIPE: How to Integrate ChatGPT into EFL Writing Education
View PDFAbstract:The integration of generative AI in the field of education is actively being explored. In particular, ChatGPT has garnered significant interest, offering an opportunity to examine its effectiveness in English as a foreign language (EFL) education. To address this need, we present a novel learning platform called RECIPE (Revising an Essay with ChatGPT on an Interactive Platform for EFL learners). Our platform features two types of prompts that facilitate conversations between ChatGPT and students: (1) a hidden prompt for ChatGPT to take an EFL teacher role and (2) an open prompt for students to initiate a dialogue with a self-written summary of what they have learned. We deployed this platform for 213 undergraduate and graduate students enrolled in EFL writing courses and seven instructors. For this study, we collect students' interaction data from RECIPE, including students' perceptions and usage of the platform, and user scenarios are examined with the data. We also conduct a focus group interview with six students and an individual interview with one EFL instructor to explore design opportunities for leveraging generative AI models in the field of EFL education.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.