Computer Science > Computation and Language
[Submitted on 8 May 2023]
Title:What Do Patients Say About Their Disease Symptoms? Deep Multilabel Text Classification With Human-in-the-Loop Curation for Automatic Labeling of Patient Self Reports of Problems
View PDFAbstract:The USA Food and Drug Administration has accorded increasing importance to patient-reported problems in clinical and research settings. In this paper, we explore one of the largest online datasets comprising 170,141 open-ended self-reported responses (called "verbatims") from patients with Parkinson's (PwPs) to questions about what bothers them about their Parkinson's Disease and how it affects their daily functioning, also known as the Parkinson's Disease Patient Report of Problems. Classifying such verbatims into multiple clinically relevant symptom categories is an important problem and requires multiple steps - expert curation, a multi-label text classification (MLTC) approach and large amounts of labelled training data. Further, human annotation of such large datasets is tedious and expensive. We present a novel solution to this problem where we build a baseline dataset using 2,341 (of the 170,141) verbatims annotated by nine curators including clinical experts and PwPs. We develop a rules based linguistic-dictionary using NLP techniques and graph database-based expert phrase-query system to scale the annotation to the remaining cohort generating the machine annotated dataset, and finally build a Keras-Tensorflow based MLTC model for both datasets. The machine annotated model significantly outperforms the baseline model with a F1-score of 95% across 65 symptom categories on a held-out test set.
Submission history
From: Vikram Ramanarayanan [view email][v1] Mon, 8 May 2023 17:42:23 UTC (1,822 KB)
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.