Computer Science > Machine Learning
[Submitted on 5 May 2023]
Title:Neural Exploitation and Exploration of Contextual Bandits
View PDFAbstract:In this paper, we study utilizing neural networks for the exploitation and exploration of contextual multi-armed bandits. Contextual multi-armed bandits have been studied for decades with various applications. To solve the exploitation-exploration trade-off in bandits, there are three main techniques: epsilon-greedy, Thompson Sampling (TS), and Upper Confidence Bound (UCB). In recent literature, a series of neural bandit algorithms have been proposed to adapt to the non-linear reward function, combined with TS or UCB strategies for exploration. In this paper, instead of calculating a large-deviation based statistical bound for exploration like previous methods, we propose, ``EE-Net,'' a novel neural-based exploitation and exploration strategy. In addition to using a neural network (Exploitation network) to learn the reward function, EE-Net uses another neural network (Exploration network) to adaptively learn the potential gains compared to the currently estimated reward for exploration. We provide an instance-based $\widetilde{\mathcal{O}}(\sqrt{T})$ regret upper bound for EE-Net and show that EE-Net outperforms related linear and neural contextual bandit baselines on real-world datasets.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.