Electrical Engineering and Systems Science > Signal Processing
[Submitted on 2 May 2023]
Title:Deep Learning-Assisted Simultaneous Targets Sensing and Super-Resolution Imaging
View PDFAbstract:Recently, metasurfaces have experienced revolutionary growth in the sensing and superresolution imaging field, due to their enabling of subwavelength manipulation of electromagnetic waves. However, the addition of metasurfaces multiplies the complexity of retrieving target information from the detected fields. Besides, although the deep learning method affords a compelling platform for a series of electromagnetic problems, many studies mainly concentrate on resolving one single function and limit the research's versatility. In this study, a multifunctional deep neural network is demonstrated to reconstruct target information in a metasurface targets interactive system. Firstly, the interactive scenario is confirmed to tolerate the system noises in a primary verification experiment. Then, fed with the electric field distributions, the multitask deep neural network can not only sense the quantity and permittivity of targets but also generate superresolution images with high precision. The deep learning method provides another way to recover targets' diverse information in metasurface based target detection, accelerating the progression of target reconstruction areas. This methodology may also hold promise for inverse reconstruction or forward prediction problems in other electromagnetic scenarios.
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.