Computer Science > Computer Vision and Pattern Recognition
[Submitted on 2 May 2023 (v1), last revised 24 Oct 2023 (this version, v2)]
Title:VPGTrans: Transfer Visual Prompt Generator across LLMs
View PDFAbstract:While developing a new multimodal LLM (MLLM) by pre-training on tremendous image-text pairs from scratch can be exceedingly resource-consuming, connecting an existing LLM with a comparatively lightweight visual prompt generator (VPG) becomes a feasible paradigm. However, further tuning the VPG part of the MLLM still suffers from indispensable computational costs, i.e., requiring thousands of GPU hours and millions of training data. One alternative solution is to transfer an existing VPG from any existing MLLMs for the target MLLM.
In this work, we for the first time investigate the VPG transferability across LLMs, and explore a solution to reduce the cost of VPG transfer. We first study the VPG transfer across different LLM sizes (e.g., small-to-large), and across different LLM types, through which we diagnose the key factors to maximize the transfer efficiency. Based on our observation, we design a two-stage transfer framework named VPGTrans, which is simple yet highly effective. Through extensive experiments, we demonstrate that VPGTrans helps significantly speed up the transfer learning process without compromising performance. Remarkably, it helps achieve the VPG transfer from BLIP-2 OPT$_\text{2.7B}$ to BLIP-2 OPT$_\text{6.7B}$ with over 10 times speed-up and 10.7% training data compared with connecting a VPG to OPT$_\text{6.7B}$ from scratch. Further, a series of intriguing findings and potential rationales behind them are provided and discussed. Finally, we showcase the practical value of our VPGTrans approach, by customizing two novel MLLMs, including VL-LLaMA and VL-Vicuna, with recently released LLaMA and Vicuna LLMs.
Submission history
From: Ao Zhang [view email][v1] Tue, 2 May 2023 09:28:39 UTC (9,195 KB)
[v2] Tue, 24 Oct 2023 02:57:42 UTC (9,598 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.