Computer Science > Social and Information Networks
[Submitted on 27 Apr 2023]
Title:Rumor Detection with Hierarchical Representation on Bipartite Adhoc Event Trees
View PDFAbstract:The rapid growth of social media has caused tremendous effects on information propagation, raising extreme challenges in detecting rumors. Existing rumor detection methods typically exploit the reposting propagation of a rumor candidate for detection by regarding all reposts to a rumor candidate as a temporal sequence and learning semantics representations of the repost sequence. However, extracting informative support from the topological structure of propagation and the influence of reposting authors for debunking rumors is crucial, which generally has not been well addressed by existing methods. In this paper, we organize a claim post in circulation as an adhoc event tree, extract event elements, and convert it to bipartite adhoc event trees in terms of both posts and authors, i.e., author tree and post tree. Accordingly, we propose a novel rumor detection model with hierarchical representation on the bipartite adhoc event trees called BAET. Specifically, we introduce word embedding and feature encoder for the author and post tree, respectively, and design a root-aware attention module to perform node representation. Then we adopt the tree-like RNN model to capture the structural correlations and propose a tree-aware attention module to learn tree representation for the author tree and post tree, respectively. Extensive experimental results on two public Twitter datasets demonstrate the effectiveness of BAET in exploring and exploiting the rumor propagation structure and the superior detection performance of BAET over state-of-the-art baseline methods.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.