Computer Science > Computer Vision and Pattern Recognition
[Submitted on 25 Apr 2023 (v1), last revised 14 May 2023 (this version, v2)]
Title:PoseVocab: Learning Joint-structured Pose Embeddings for Human Avatar Modeling
View PDFAbstract:Creating pose-driven human avatars is about modeling the mapping from the low-frequency driving pose to high-frequency dynamic human appearances, so an effective pose encoding method that can encode high-fidelity human details is essential to human avatar modeling. To this end, we present PoseVocab, a novel pose encoding method that encourages the network to discover the optimal pose embeddings for learning the dynamic human appearance. Given multi-view RGB videos of a character, PoseVocab constructs key poses and latent embeddings based on the training poses. To achieve pose generalization and temporal consistency, we sample key rotations in $so(3)$ of each joint rather than the global pose vectors, and assign a pose embedding to each sampled key rotation. These joint-structured pose embeddings not only encode the dynamic appearances under different key poses, but also factorize the global pose embedding into joint-structured ones to better learn the appearance variation related to the motion of each joint. To improve the representation ability of the pose embedding while maintaining memory efficiency, we introduce feature lines, a compact yet effective 3D representation, to model more fine-grained details of human appearances. Furthermore, given a query pose and a spatial position, a hierarchical query strategy is introduced to interpolate pose embeddings and acquire the conditional pose feature for dynamic human synthesis. Overall, PoseVocab effectively encodes the dynamic details of human appearance and enables realistic and generalized animation under novel poses. Experiments show that our method outperforms other state-of-the-art baselines both qualitatively and quantitatively in terms of synthesis quality. Code is available at this https URL.
Submission history
From: Zhe Li [view email][v1] Tue, 25 Apr 2023 17:25:36 UTC (7,465 KB)
[v2] Sun, 14 May 2023 13:15:20 UTC (7,465 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.