Computer Science > Computers and Society
[Submitted on 29 Mar 2023]
Title:Quantitative study about the estimated impact of the AI Act
View PDFAbstract:With the Proposal for a Regulation laying down harmonised rules on Artificial Intelligence (AI Act) the European Union provides the first regulatory document that applies to the entire complex of AI systems. While some fear that the regulation leaves too much room for interpretation and thus bring little benefit to society, others expect that the regulation is too restrictive and, thus, blocks progress and innovation, as well as hinders the economic success of companies within the EU. Without a systematic approach, it is difficult to assess how it will actually impact the AI landscape. In this paper, we suggest a systematic approach that we applied on the initial draft of the AI Act that has been released in April 2021. We went through several iterations of compiling the list of AI products and projects in and from Germany, which the Lernende Systeme platform lists, and then classified them according to the AI Act together with experts from the fields of computer science and law. Our study shows a need for more concrete formulation, since for some provisions it is often unclear whether they are applicable in a specific case or not. Apart from that, it turns out that only about 30\% of the AI systems considered would be regulated by the AI Act, the rest would be classified as low-risk. However, as the database is not representative, the results only provide a first assessment. The process presented can be applied to any collections, and also repeated when regulations are about to change. This allows fears of over- or under-regulation to be investigated before the regulations comes into effect.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.