Computer Science > Computer Vision and Pattern Recognition
[Submitted on 12 Apr 2023 (v1), last revised 20 Jun 2023 (this version, v2)]
Title:ASL Citizen: A Community-Sourced Dataset for Advancing Isolated Sign Language Recognition
View PDFAbstract:Sign languages are used as a primary language by approximately 70 million D/deaf people world-wide. However, most communication technologies operate in spoken and written languages, creating inequities in access. To help tackle this problem, we release ASL Citizen, the first crowdsourced Isolated Sign Language Recognition (ISLR) dataset, collected with consent and containing 83,399 videos for 2,731 distinct signs filmed by 52 signers in a variety of environments. We propose that this dataset be used for sign language dictionary retrieval for American Sign Language (ASL), where a user demonstrates a sign to their webcam to retrieve matching signs from a dictionary. We show that training supervised machine learning classifiers with our dataset advances the state-of-the-art on metrics relevant for dictionary retrieval, achieving 63% accuracy and a recall-at-10 of 91%, evaluated entirely on videos of users who are not present in the training or validation sets. An accessible PDF of this article is available at the following link: this https URL
Submission history
From: Aashaka Desai [view email][v1] Wed, 12 Apr 2023 15:52:53 UTC (1,273 KB)
[v2] Tue, 20 Jun 2023 03:20:18 UTC (3,584 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.