Computer Science > Machine Learning
[Submitted on 8 Apr 2023]
Title:Unsupervised Speech Representation Pooling Using Vector Quantization
View PDFAbstract:With the advent of general-purpose speech representations from large-scale self-supervised models, applying a single model to multiple downstream tasks is becoming a de-facto approach. However, the pooling problem remains; the length of speech representations is inherently variable. The naive average pooling is often used, even though it ignores the characteristics of speech, such as differently lengthed phonemes. Hence, we design a novel pooling method to squash acoustically similar representations via vector quantization, which does not require additional training, unlike attention-based pooling. Further, we evaluate various unsupervised pooling methods on various self-supervised models. We gather diverse methods scattered around speech and text to evaluate on various tasks: keyword spotting, speaker identification, intent classification, and emotion recognition. Finally, we quantitatively and qualitatively analyze our method, comparing it with supervised pooling methods.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.