Computer Science > Social and Information Networks
[Submitted on 29 Mar 2023]
Title:Group polarization, influence, and domination in online interaction networks: A case study of the 2022 Brazilian elections
View PDFAbstract:In this work, we investigate the evolution of polarization, influence, and domination in online interaction networks. Twitter data collected before and during the 2022 Brazilian elections is used as a case study. From a theoretical perspective, we develop a methodology called d-modularity that allows discovering the contribution of specific groups to network polarization using the well-known modularity measure. While the overall network modularity (somewhat unexpectedly) decreased, the proposed group-oriented approach allows concluding that the contribution of the right-leaning community to this modularity increased, remaining very high during the analyzed period. Our methodology is general enough to be used in any situation when the contribution of specific groups to overall network modularity and polarization is needed to investigate. Moreover, using the concept of partial domination, we are able to compare the reach of sets of influential profiles from different groups and their ability to accomplish coordinated communication inside their groups and across segments of the entire network during some specific time window. We show that in the whole network, the left-leaning high-influential information spreaders dominated, reaching a substantial fraction of users with fewer spreaders. However, when comparing domination inside the groups, the results are inverse. Right-leaning spreaders dominate their communities using few nodes, showing as the most capable of accomplishing coordinated communication. The results bring evidence of extreme isolation and the ease of accomplishing coordinated communication that characterized right-leaning communities during the 2022 Brazilian elections.
Current browse context:
cs.SI
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.