Computer Science > Machine Learning
[Submitted on 21 Mar 2023]
Title:MSTFormer: Motion Inspired Spatial-temporal Transformer with Dynamic-aware Attention for long-term Vessel Trajectory Prediction
View PDFAbstract:Incorporating the dynamics knowledge into the model is critical for achieving accurate trajectory prediction while considering the spatial and temporal characteristics of the vessel. However, existing methods rarely consider the underlying dynamics knowledge and directly use machine learning algorithms to predict the trajectories. Intuitively, the vessel's motions are following the laws of dynamics, e.g., the speed of a vessel decreases when turning a corner. Yet, it is challenging to combine dynamic knowledge and neural networks due to their inherent heterogeneity. Against this background, we propose MSTFormer, a motion inspired vessel trajectory prediction method based on Transformer. The contribution of this work is threefold. First, we design a data augmentation method to describe the spatial features and motion features of the trajectory. Second, we propose a Multi-headed Dynamic-aware Self-attention mechanism to focus on trajectory points with frequent motion transformations. Finally, we construct a knowledge-inspired loss function to further boost the performance of the model. Experimental results on real-world datasets show that our strategy not only effectively improves long-term predictive capability but also outperforms backbones on cornering this http URL ablation analysis further confirms the efficacy of the proposed method. To the best of our knowledge, MSTFormer is the first neural network model for trajectory prediction fused with vessel motion dynamics, providing a worthwhile direction for future this http URL source code is available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.