Computer Science > Machine Learning
[Submitted on 21 Mar 2023 (v1), last revised 17 Jul 2024 (this version, v4)]
Title:Sparse-IFT: Sparse Iso-FLOP Transformations for Maximizing Training Efficiency
View PDF HTML (experimental)Abstract:Recent research has focused on weight sparsity in deep neural network training to reduce FLOPs, aiming for improved efficiency (test accuracy w.r.t training FLOPs). However, sparse weight training often compromises accuracy, requiring extended training schedules to attain the accuracy of dense models. In contrast, our approach, Sparse Iso-FLOP Transformations (Sparse-IFT), uses sparsity to improve accuracy while maintaining dense model FLOPs. Using a single hyperparameter (i.e., the sparsity level), Sparse-IFTs efficiently replace dense layers, expanding the search space for optimal sparse masks. In addition, dynamic sparse training (DST) with Sparse-IFT models effectively navigate this larger sparse mask-weight space, which is evidenced by a spectral analysis using Ramanujan graph properties. Our study reveals a robust correlation among mask topology, weights, and final performance. Notably, without adjusting any training hyperparameters, replacing dense layers with Sparse-IFT yields significant improvements, such as a +3.5% boost for ResNet-18 on ImageNet and +0.9% for GPT-3 Small on the Open LLM leaderboard. To the best of our knowledge, this is the first work to demonstrate the use of sparsity for improving the accuracy of dense models through a set of simple-to-use sparse transformations. Code is available at: this https URL.
Submission history
From: Vithursan Thangarasa [view email][v1] Tue, 21 Mar 2023 01:06:37 UTC (469 KB)
[v2] Sat, 25 Mar 2023 15:35:03 UTC (480 KB)
[v3] Tue, 5 Mar 2024 22:12:38 UTC (349 KB)
[v4] Wed, 17 Jul 2024 21:57:12 UTC (505 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.