Computer Science > Computer Vision and Pattern Recognition
[Submitted on 10 Mar 2023]
Title:Learning to Select Camera Views: Efficient Multiview Understanding at Few Glances
View PDFAbstract:Multiview camera setups have proven useful in many computer vision applications for reducing ambiguities, mitigating occlusions, and increasing field-of-view coverage. However, the high computational cost associated with multiple views poses a significant challenge for end devices with limited computational resources. To address this issue, we propose a view selection approach that analyzes the target object or scenario from given views and selects the next best view for processing. Our approach features a reinforcement learning based camera selection module, MVSelect, that not only selects views but also facilitates joint training with the task network. Experimental results on multiview classification and detection tasks show that our approach achieves promising performance while using only 2 or 3 out of N available views, significantly reducing computational costs. Furthermore, analysis on the selected views reveals that certain cameras can be shut off with minimal performance impact, shedding light on future camera layout optimization for multiview systems. Code is available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.