Computer Science > Computer Vision and Pattern Recognition
[Submitted on 9 Mar 2023]
Title:An Evaluation of Non-Contrastive Self-Supervised Learning for Federated Medical Image Analysis
View PDFAbstract:Privacy and annotation bottlenecks are two major issues that profoundly affect the practicality of machine learning-based medical image analysis. Although significant progress has been made in these areas, these issues are not yet fully resolved. In this paper, we seek to tackle these concerns head-on and systematically explore the applicability of non-contrastive self-supervised learning (SSL) algorithms under federated learning (FL) simulations for medical image analysis. We conduct thorough experimentation of recently proposed state-of-the-art non-contrastive frameworks under standard FL setups. With the SoTA Contrastive Learning algorithm, SimCLR as our comparative baseline, we benchmark the performances of our 4 chosen non-contrastive algorithms under non-i.i.d. data conditions and with a varying number of clients. We present a holistic evaluation of these techniques on 6 standardized medical imaging datasets. We further analyse different trends inferred from the findings of our research, with the aim to find directions for further research based on ours. To the best of our knowledge, ours is the first to perform such a thorough analysis of federated self-supervised learning for medical imaging. All of our source code will be made public upon acceptance of the paper.
Submission history
From: Soumitri Chattopadhyay [view email][v1] Thu, 9 Mar 2023 19:31:14 UTC (6,657 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.