Computer Science > Machine Learning
[Submitted on 8 Mar 2023]
Title:Sketching with Spherical Designs for Noisy Data Fitting on Spheres
View PDFAbstract:This paper proposes a sketching strategy based on spherical designs, which is applied to the classical spherical basis function approach for massive spherical data fitting. We conduct theoretical analysis and numerical verifications to demonstrate the feasibility of the proposed { sketching} strategy. From the theoretical side, we prove that sketching based on spherical designs can reduce the computational burden of the spherical basis function approach without sacrificing its approximation capability. In particular, we provide upper and lower bounds for the proposed { sketching} strategy to fit noisy data on spheres. From the experimental side, we numerically illustrate the feasibility of the sketching strategy by showing its comparable fitting performance with the spherical basis function approach.
These interesting findings show that the proposed sketching strategy is capable of fitting massive and noisy data on spheres.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.