Computer Science > Multimedia
[Submitted on 27 Feb 2023]
Title:Memory-augmented Contrastive Learning for Talking Head Generation
View PDFAbstract:Given one reference facial image and a piece of speech as input, talking head generation aims to synthesize a realistic-looking talking head video. However, generating a lip-synchronized video with natural head movements is challenging. The same speech clip can generate multiple possible lip and head movements, that is, there is no one-to-one mapping relationship between them. To overcome this problem, we propose a Speech Feature Extractor (SFE) based on memory-augmented self-supervised contrastive learning, which introduces the memory module to store multiple different speech mapping results. In addition, we introduce the Mixed Density Networks (MDN) into the landmark regression task to generate multiple predicted facial landmarks. Extensive qualitative and quantitative experiments show that the quality of our facial animation is significantly superior to that of the state-of-the-art (SOTA). The code has been released at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.