Computer Science > Computer Vision and Pattern Recognition
[Submitted on 9 Feb 2023 (v1), last revised 26 Oct 2023 (this version, v2)]
Title:Lithium Metal Battery Quality Control via Transformer-CNN Segmentation
View PDFAbstract:Lithium metal battery (LMB) has the potential to be the next-generation battery system because of its high theoretical energy density. However, defects known as dendrites are formed by heterogeneous lithium (Li) plating, which hinders the development and utilization of LMBs. Non-destructive techniques to observe the dendrite morphology often use X-ray computed tomography (XCT) to provide cross-sectional views. To retrieve three-dimensional structures inside a battery, image segmentation becomes essential to quantitatively analyze XCT images. This work proposes a new semantic segmentation approach using a transformer-based neural network called TransforCNN that is capable of segmenting out dendrites from XCT data. In addition, we compare the performance of the proposed TransforCNN with three other algorithms, such as U-Net, Y-Net, and E-Net, consisting of an Ensemble Network model for XCT analysis. Our results show the advantages of using TransforCNN when evaluating over-segmentation metrics, such as mean Intersection over Union (mIoU) and mean Dice Similarity Coefficient (mDSC) as well as through several qualitatively comparative visualizations.
Submission history
From: Daniela Ushizima [view email][v1] Thu, 9 Feb 2023 18:25:24 UTC (1,728 KB)
[v2] Thu, 26 Oct 2023 04:30:30 UTC (3,745 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.