Computer Science > Software Engineering
[Submitted on 9 Feb 2023 (v1), last revised 15 Mar 2023 (this version, v2)]
Title:Zero-Shot Learning for Requirements Classification: An Exploratory Study
View PDFAbstract:Context: Requirements engineering researchers have been experimenting with machine learning and deep learning approaches for a range of RE tasks, such as requirements classification, requirements tracing, ambiguity detection, and modelling. However, most of today's ML/DL approaches are based on supervised learning techniques, meaning that they need to be trained using a large amount of task-specific labelled training data. This constraint poses an enormous challenge to RE researchers, as the lack of labelled data makes it difficult for them to fully exploit the benefit of advanced ML/DL technologies. Objective: This paper addresses this problem by showing how a zero-shot learning approach can be used for requirements classification without using any labelled training data. We focus on the classification task because many RE tasks can be framed as classification problems. Method: The ZSL approach used in our study employs contextual word-embeddings and transformer-based language models. We demonstrate this approach through a series of experiments to perform three classification tasks: (1)FR/NFR: classification functional requirements vs non-functional requirements; (2)NFR: identification of NFR classes; (3)Security: classification of security vs non-security requirements. Results: The study shows that the ZSL approach achieves an F1 score of 0.66 for the FR/NFR task. For the NFR task, the approach yields F1~0.72-0.80, considering the most frequent classes. For the Security task, F1~0.66. All of the aforementioned F1 scores are achieved with zero-training efforts. Conclusion: This study demonstrates the potential of ZSL for requirements classification. An important implication is that it is possible to have very little or no training data to perform classification tasks. The proposed approach thus contributes to the solution of the long-standing problem of data shortage in RE.
Submission history
From: Waad Alhoshan [view email][v1] Thu, 9 Feb 2023 16:05:01 UTC (817 KB)
[v2] Wed, 15 Mar 2023 21:42:04 UTC (155 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.