Computer Science > Sound
[Submitted on 9 Feb 2023 (v1), last revised 21 Sep 2023 (this version, v2)]
Title:ERNIE-Music: Text-to-Waveform Music Generation with Diffusion Models
View PDFAbstract:In recent years, the burgeoning interest in diffusion models has led to significant advances in image and speech generation. Nevertheless, the direct synthesis of music waveforms from unrestricted textual prompts remains a relatively underexplored domain. In response to this lacuna, this paper introduces a pioneering contribution in the form of a text-to-waveform music generation model, underpinned by the utilization of diffusion models. Our methodology hinges on the innovative incorporation of free-form textual prompts as conditional factors to guide the waveform generation process within the diffusion model framework. Addressing the challenge of limited text-music parallel data, we undertake the creation of a dataset by harnessing web resources, a task facilitated by weak supervision techniques. Furthermore, a rigorous empirical inquiry is undertaken to contrast the efficacy of two distinct prompt formats for text conditioning, namely, music tags and unconstrained textual descriptions. The outcomes of this comparative analysis affirm the superior performance of our proposed model in terms of enhancing text-music relevance. Finally, our work culminates in a demonstrative exhibition of the excellent capabilities of our model in text-to-music generation. We further demonstrate that our generated music in the waveform domain outperforms previous works by a large margin in terms of diversity, quality, and text-music relevance.
Submission history
From: Pengfei Zhu [view email][v1] Thu, 9 Feb 2023 06:27:09 UTC (1,443 KB)
[v2] Thu, 21 Sep 2023 09:30:00 UTC (1,650 KB)
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.