Electrical Engineering and Systems Science > Systems and Control
[Submitted on 6 Feb 2023]
Title:A Quantum Neural Network Regression for Modeling Lithium-ion Battery Capacity Degradation
View PDFAbstract:Given the high power density low discharge rate and decreasing cost rechargeable lithium-ion batteries LiBs have found a wide range of applications such as power grid level storage systems electric vehicles and mobile devices. Developing a framework to accurately model the nonlinear degradation process of LiBs which is indeed a supervised learning problem becomes an important research topic. This paper presents a classical-quantum hybrid machine learning approach to capture the LiB degradation model that assesses battery cell life loss from operating profiles. Our work is motivated by recent advances in quantum computers as well as the similarity between neural networks and quantum circuits. Similar to adjusting weight parameters in conventional neural networks the parameters of the quantum circuit namely the qubits degree of freedom can be tuned to learn a nonlinear function in a supervised learning fashion. As a proof of concept paper our obtained numerical results with the battery dataset provided by NASA demonstrate the ability of the quantum neural networks in modeling the nonlinear relationship between the degraded capacity and the operating cycles. We also discuss the potential advantage of the quantum approach compared to conventional neural networks in classical computers in dealing with massive data especially in the context of future penetration of EVs and energy storage.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.