Computer Science > Machine Learning
[Submitted on 31 Jan 2023 (v1), last revised 11 Dec 2023 (this version, v2)]
Title:Policy Gradient for Rectangular Robust Markov Decision Processes
View PDF HTML (experimental)Abstract:Policy gradient methods have become a standard for training reinforcement learning agents in a scalable and efficient manner. However, they do not account for transition uncertainty, whereas learning robust policies can be computationally expensive. In this paper, we introduce robust policy gradient (RPG), a policy-based method that efficiently solves rectangular robust Markov decision processes (MDPs). We provide a closed-form expression for the worst occupation measure. Incidentally, we find that the worst kernel is a rank-one perturbation of the nominal. Combining the worst occupation measure with a robust Q-value estimation yields an explicit form of the robust gradient. Our resulting RPG can be estimated from data with the same time complexity as its non-robust equivalent. Hence, it relieves the computational burden of convex optimization problems required for training robust policies by current policy gradient approaches.
Submission history
From: Esther Derman [view email][v1] Tue, 31 Jan 2023 12:40:50 UTC (1,088 KB)
[v2] Mon, 11 Dec 2023 03:59:42 UTC (2,803 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.