Computer Science > Machine Learning
[Submitted on 30 Jan 2023]
Title:Near Optimal Private and Robust Linear Regression
View PDFAbstract:We study the canonical statistical estimation problem of linear regression from $n$ i.i.d.~examples under $(\varepsilon,\delta)$-differential privacy when some response variables are adversarially corrupted. We propose a variant of the popular differentially private stochastic gradient descent (DP-SGD) algorithm with two innovations: a full-batch gradient descent to improve sample complexity and a novel adaptive clipping to guarantee robustness. When there is no adversarial corruption, this algorithm improves upon the existing state-of-the-art approach and achieves a near optimal sample complexity. Under label-corruption, this is the first efficient linear regression algorithm to guarantee both $(\varepsilon,\delta)$-DP and robustness. Synthetic experiments confirm the superiority of our approach.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.