Computer Science > Logic in Computer Science
[Submitted on 30 Jan 2023 (v1), last revised 26 Apr 2023 (this version, v3)]
Title:Evidential Decision Theory via Partial Markov Categories
View PDFAbstract:We introduce partial Markov categories. In the same way that Markov categories encode stochastic processes, partial Markov categories encode stochastic processes with constraints, observations and updates. In particular, we prove a synthetic Bayes theorem; we apply it to define a syntactic partial theory of observations on any Markov category, whose normalisations can be computed in the original Markov category. Finally, we formalise Evidential Decision Theory in terms of partial Markov categories, and provide implemented examples.
Submission history
From: Elena Di Lavore [view email][v1] Mon, 30 Jan 2023 15:31:08 UTC (147 KB)
[v2] Sat, 11 Mar 2023 16:16:35 UTC (123 KB)
[v3] Wed, 26 Apr 2023 15:46:07 UTC (125 KB)
Current browse context:
cs.LO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.