Computer Science > Cryptography and Security
[Submitted on 30 Jan 2023]
Title:Behavioural Reports of Multi-Stage Malware
View PDFAbstract:The extensive damage caused by malware requires anti-malware systems to be constantly improved to prevent new threats. The current trend in malware detection is to employ machine learning models to aid in the classification process. We propose a new dataset with the objective of improving current anti-malware systems. The focus of this dataset is to improve host based intrusion detection systems by providing API call sequences for thousands of malware samples executed in Windows 10 virtual machines. A tutorial on how to create and expand this dataset is provided along with a benchmark demonstrating how to use this dataset to classify malware. The data contains long sequences of API calls for each sample, and in order to create models that can be deployed in resource constrained devices, three feature selection methods were tested. The principal innovation, however, lies in the multi-label classification system in which one sequence of APIs can be tagged with multiple labels describing its malicious behaviours.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.