Electrical Engineering and Systems Science > Systems and Control
[Submitted on 28 Jan 2023 (v1), last revised 22 Apr 2023 (this version, v2)]
Title:Hybrid Cognition for Target Tracking in Cognitive Radar Networks
View PDFAbstract:This work investigates online learning techniques for a cognitive radar network utilizing feedback from a central coordinator. The available spectrum is divided into channels, and each radar node must transmit in one channel per time step. The network attempts to optimize radar tracking accuracy by learning the optimal channel selection for spectrum sharing and radar performance. We define optimal selection for such a network in relation to the radar observation quality obtainable in a given channel. This is a difficult problem since the network must seek the optimal assignment from nodes to channels, rather than just seek the best overall channel. Since the presence of primary users appears as interference, the approach also improves spectrum sharing performance. In other words, maximizing radar performance also minimizes interference to primary users. Each node is able to learn the quality of several available channels through repeated sensing. We define hybrid cognition as the condition where both the independent radar nodes as well as the central coordinator are modeled as cognitive agents, with restrictions on the amount of information that can be exchanged between the radars and the coordinator. Importantly, each part of the network acts as an online learner, observing the environment to inform future actions. We show that in interference-limited spectrum, where the signal-to-interference-plus-noise ratio varies by channel and over time for a target with fixed radar cross section, a cognitive radar network is able to use information from the central coordinator in order to reduce the amount of time necessary to learn the optimal channel selection. We also show that even limited use of a central coordinator can eliminate collisions, which occur when two nodes select the same channel.
Submission history
From: William Howard [view email][v1] Sat, 28 Jan 2023 13:01:23 UTC (1,298 KB)
[v2] Sat, 22 Apr 2023 17:00:48 UTC (1,299 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.