Computer Science > Computation and Language
[Submitted on 11 Jan 2023]
Title:Multilingual Entity and Relation Extraction from Unified to Language-specific Training
View PDFAbstract:Entity and relation extraction is a key task in information extraction, where the output can be used for downstream NLP tasks. Existing approaches for entity and relation extraction tasks mainly focus on the English corpora and ignore other languages. Thus, it is critical to improving performance in a multilingual setting. Meanwhile, multilingual training is usually used to boost cross-lingual performance by transferring knowledge from languages (e.g., high-resource) to other (e.g., low-resource) languages. However, language interference usually exists in multilingual tasks as the model parameters are shared among all languages. In this paper, we propose a two-stage multilingual training method and a joint model called Multilingual Entity and Relation Extraction framework (mERE) to mitigate language interference across languages. Specifically, we randomly concatenate sentences in different languages to train a Language-universal Aggregator (LA), which narrows the distance of embedding representations by obtaining the unified language representation. Then, we separate parameters to mitigate interference via tuning a Language-specific Switcher (LS), which includes several independent sub-modules to refine the language-specific feature representation. After that, to enhance the relational triple extraction, the sentence representations concatenated with the relation feature are used to recognize the entities. Extensive experimental results show that our method outperforms both the monolingual and multilingual baseline methods. Besides, we also perform detailed analysis to show that mERE is lightweight but effective on relational triple extraction and mERE{} is easy to transfer to other backbone models of multi-field tasks, which further demonstrates the effectiveness of our method.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.