Computer Science > Computer Vision and Pattern Recognition
[Submitted on 3 Jan 2023 (v1), last revised 8 Aug 2024 (this version, v3)]
Title:Reference Twice: A Simple and Unified Baseline for Few-Shot Instance Segmentation
View PDF HTML (experimental)Abstract:Few-Shot Instance Segmentation (FSIS) requires detecting and segmenting novel classes with limited support examples. Existing methods based on Region Proposal Networks (RPNs) face two issues: 1) Overfitting suppresses novel class objects; 2) Dual-branch models require complex spatial correlation strategies to prevent spatial information loss when generating class prototypes. We introduce a unified framework, Reference Twice (RefT), to exploit the relationship between support and query features for FSIS and related tasks. Our three main contributions are: 1) A novel transformer-based baseline that avoids overfitting, offering a new direction for FSIS; 2) Demonstrating that support object queries encode key factors after base training, allowing query features to be enhanced twice at both feature and query levels using simple cross-attention, thus avoiding complex spatial correlation interaction; 3) Introducing a class-enhanced base knowledge distillation loss to address the issue of DETR-like models struggling with incremental settings due to the input projection layer, enabling easy extension to incremental FSIS. Extensive experimental evaluations on the COCO dataset under three FSIS settings demonstrate that our method performs favorably against existing approaches across different shots, \eg, $+8.2/+9.4$ performance gain over state-of-the-art methods with 10/30-shots. Source code and models will be available at this https URL.
Submission history
From: Yue Han [view email][v1] Tue, 3 Jan 2023 15:33:48 UTC (5,266 KB)
[v2] Tue, 10 Jan 2023 17:44:57 UTC (5,261 KB)
[v3] Thu, 8 Aug 2024 03:22:43 UTC (9,550 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.