Computer Science > Artificial Intelligence
[Submitted on 21 Dec 2022]
Title:Crowd Score: A Method for the Evaluation of Jokes using Large Language Model AI Voters as Judges
View PDFAbstract:This paper presents the Crowd Score, a novel method to assess the funniness of jokes using large language models (LLMs) as AI judges. Our method relies on inducing different personalities into the LLM and aggregating the votes of the AI judges into a single score to rate jokes. We validate the votes using an auditing technique that checks if the explanation for a particular vote is reasonable using the LLM. We tested our methodology on 52 jokes in a crowd of four AI voters with different humour types: affiliative, self-enhancing, aggressive and self-defeating. Our results show that few-shot prompting leads to better results than zero-shot for the voting question. Personality induction showed that aggressive and self-defeating voters are significantly more inclined to find more jokes funny of a set of aggressive/self-defeating jokes than the affiliative and self-enhancing voters. The Crowd Score follows the same trend as human judges by assigning higher scores to jokes that are also considered funnier by human judges. We believe that our methodology could be applied to other creative domains such as story, poetry, slogans, etc. It could both help the adoption of a flexible and accurate standard approach to compare different work in the CC community under a common metric and by minimizing human participation in assessing creative artefacts, it could accelerate the prototyping of creative artefacts and reduce the cost of hiring human participants to rate creative artefacts.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.