Computer Science > Human-Computer Interaction
[Submitted on 6 Dec 2022]
Title:Visual Area of Interests based Multimodal Trajectory Prediction for Probabilistic Risk Assessment
View PDFAbstract:Accurate and reliable prediction of driving intentions and future trajectories contributes to cooperation between human drivers and ADAS in complex traffic environments. This paper proposes a visual AOI (Area of Interest) based multimodal trajectory prediction model for probabilistic risk assessment at intersections. In this study, we find that the visual AOI implies the driving intention and is about 0.6-2.1 s ahead of the operation. Therefore, we designed a trajectory prediction model that integrates the driving intention (DI) and the multimodal trajectory (MT) predictions. The DI model was pre-trained independently to extract the driving intention using features including the visual AOI, historical vehicle states, and environmental context. The intention prediction experiments verify that the visual AOI-based DI model predicts steering intention 0.925 s ahead of the actual steering operation. The trained DI model is then integrated into the trajectory prediction model to filter multimodal trajectories. The trajectory prediction experiments show that the proposed model outperforms the state-of-the-art models. Risk assessment for traffics at intersections verifies that the proposed method achieves high accuracy and a low false alarm rate, and identifies the potential risk about 3 s before a conflict occurs.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.