Computer Science > Databases
[Submitted on 5 Dec 2022]
Title:AMORETTO: A Method for Deriving IoT-enriched Event Logs
View PDFAbstract:Process analytics aims to gain insights into the behaviour and performance of business processes through the analysis of event logs, which record the execution of processes. With the widespread use of the Internet of Things (IoT), IoT data has become readily available and can provide valuable context information about business processes. As such, process analytics can benefit from incorporating IoT data into event logs to support more comprehensive, context-aware analyses. However, most existing studies focus on enhancing business process models with IoT data, whereas little attention has been paid to incorporating IoT data into event logs for process analytics. Hence, this paper aims to systematically integrate IoT data into event logs to support context-aware process analytics. To this end, we propose AMORETTO - a method for deriving IoT-enriched event logs. Firstly, we provide a classification of context data, referred to as the IoT-Pro context classification, which encompasses two context dimensions: IoT context and process context. Next, we present a method for integrating IoT data with event logs, guided by IoT-Pro, to yield IoT-enriched event logs. To demonstrate the applicability of AMORETTO, we applied it to a real-life use case and examined whether the derived IoT-enriched event log sufficed to address certain specific analytical questions.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.