Computer Science > Computation and Language
[Submitted on 2 Dec 2022]
Title:Towards Diverse, Relevant and Coherent Open-Domain Dialogue Generation via Hybrid Latent Variables
View PDFAbstract:Conditional variational models, using either continuous or discrete latent variables, are powerful for open-domain dialogue response generation. However, previous works show that continuous latent variables tend to reduce the coherence of generated responses. In this paper, we also found that discrete latent variables have difficulty capturing more diverse expressions. To tackle these problems, we combine the merits of both continuous and discrete latent variables and propose a Hybrid Latent Variable (HLV) method. Specifically, HLV constrains the global semantics of responses through discrete latent variables and enriches responses with continuous latent variables. Thus, we diversify the generated responses while maintaining relevance and coherence. In addition, we propose Conditional Hybrid Variational Transformer (CHVT) to construct and to utilize HLV with transformers for dialogue generation. Through fine-grained symbolic-level semantic information and additive Gaussian mixing, we construct the distribution of continuous variables, prompting the generation of diverse expressions. Meanwhile, to maintain the relevance and coherence, the discrete latent variable is optimized by self-separation training. Experimental results on two dialogue generation datasets (DailyDialog and Opensubtitles) show that CHVT is superior to traditional transformer-based variational mechanism w.r.t. diversity, relevance and coherence metrics. Moreover, we also demonstrate the benefit of applying HLV to fine-tuning two pre-trained dialogue models (PLATO and BART-base).
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.