Mathematics > Classical Analysis and ODEs
[Submitted on 1 Dec 2022]
Title:Metric approximation of set-valued functions of bounded variation by integral operators
View PDFAbstract:We introduce an adaptation of integral approximation operators to set-valued functions (SVFs, multifunctions), mapping a compact interval $[a,b]$ into the space of compact non-empty subsets of ${\mathbb R}^d$. All operators are adapted by replacing the Riemann integral for real-valued functions by the weighted metric integral for SVFs of bounded variation with compact graphs. For such a set-valued function $F$, we obtain pointwise error estimates for sequences of integral operators at points of continuity, leading to convergence at such points to $F$. At points of discontinuity of $F$, we derive estimates, which yield the convergence to a set, first described in our previous work on the metric Fourier operator. Our analysis uses recently defined one-sided local quasi-moduli at points of discontinuity and several notions of local Lipschitz property at points of continuity.
We also provide a global approach for error bounds. A multifunction $F$ is represented by the set of all its metric selections, while its approximation (its image under the operator) is represented by the set of images of these metric selections under the operator. A bound on the Hausdorff distance between these two sets of single-valued functions in $L^1$ provides our global estimates.
The theory is illustrated by presenting the examples of two concrete operators: the Bernstein-Durrmeyer operator and the Kantorovich operator.
Current browse context:
math.CA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.